Centre Number	Candidate Number	
Surname		
Other Names		est sentiment
Candidate Signature		

Level 2 Certificate in Further Mathematics June 2012

Further Mathematics Level 2 Paper 1 Non-Calculator

Tuesday 29 May 2012 1.30 pm to 3.00 pm

For this paper you must have:

mathematical instruments.

You may not use a calculator.

8360/1

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- · Fill in the boxes at the top of this page.
- · Answer all questions.
- · You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- · The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- · You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer booklet.

For Examiner's Use

Examiner's Initials

Mark

Pages

3

4 - 5

6 - 7

8 - 9

10 - 11

12 - 13

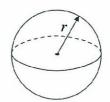
14

TOTAL

Formulae Sheet

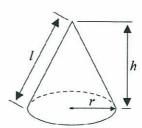
Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere
$$=4\pi r^2$$



Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$



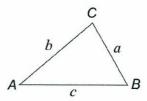
In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$



The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$
, where $a \neq 0$, are given by $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Trigonometric Identities

$$\tan\theta \equiv \frac{\sin\theta}{\cos\theta}$$

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

1
$$f(x) = 2x^2 + 7$$
 for all values of x .

1 (a) What is the value of
$$f(-1)$$
?

Answer
$$2(-1)^2 + 7 = 2(1) + 7 = 9$$
 (1 mark)

1 (b) What is the range of
$$f(x)$$
?

Answer
$$F(x) > 7$$
 (1 mark)

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Work out the matrix AB.

$$AB = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} = \begin{pmatrix} 2(5) + 0(4) \\ 1(5) + 3(4) \end{pmatrix} = \begin{pmatrix} 10 \\ 17 \end{pmatrix}$$

$$AB = \dots \qquad (2 \text{ marks})$$

Work out the greatest integer value of x that satisfies the inequality 3x + 10 < 1

Answer $\mathcal{C} = -4$ (2 marks)

4 (a) Factorise fully $2x^2 - 2x - 40$

(2x + 8)(x - 5) = 2(x + 4)(x - 5)

2 (2C+4)(2C-5)

4 (b) Factorise fully $(x+y)^2 + (x+y)(2x+5y)$

(x+y)[(x+y)+(2x+5y)]= (x+y)(3x+6y)

3/2(+4)/2(+24)

5 Simplify $(2cd^4)^3$

 $2^3 C^3 (d^4)^3 = 8C^3 d^{(4\times3)} = 8C^3 d^{12}$

Answer $8c^3d^{12}$ (2 marks)

6 Solve the simultaneous equations

$$2y = 3x + 4$$

$$2x = -3y - 7$$

Do not use trial and improvement.

$$3 + 4$$
: $13y = -13 = y = -1$

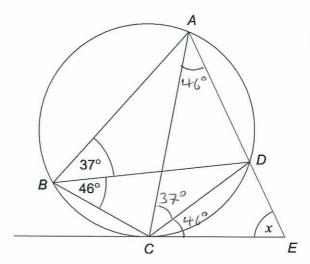
$$\underline{\text{In}} \quad \underline{\text{O}} \quad \alpha = \frac{2y-4}{3} = 2(-1)-4 = -\frac{6}{3} = -2$$

$$(x,y) = (-2,-1)$$

Answer
$$(\mathcal{I}(\mathcal{I},\mathcal{I})) = (-2,-1)$$
 (4 marks)

7 The diagram shows a cyclic quadrilateral ABCD.

ADE is a straight line. CE is a tangent to the circle.



Not drawn accurately

Work out the size of angle x.

CAD = 46° and ACD = 37° since angles in the Same segment are equal.

DCE = 46° since the angle in the opposite segment must be equal (i.e. CBD = DCE).

DC= 180 - 2(46)-37 = 51° - Angles of a briangle add to 180°

 $x = \frac{5}{9}$ degrees (3 marks)

8 A curve has equation $y = x^3 + 5x^2 + 1$

8 (a) When x = -1, show that the value of $\frac{dy}{dx}$ is -7.

dy or	f'(x) =	$3x^2+$	1006		
dr	and Fil-			0(-1)	
			3(1)-10	/	
			`)		

(2 marks)

8 (b) Work out the equation of the tangent to the curve $y = x^3 + 5x^2 + 1$ at the point where x = -1

$$F(-1) = (-1)^3 + 5(-1)^2 + 1 = -1 + 5 + 1 = 5$$

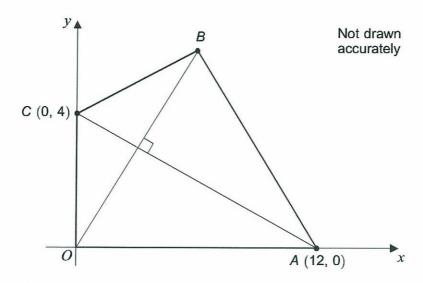
So targent in question passes through $(-1, 5)$ with gradient given by $f'(-1) = -7$.
Equation of targent is given by $y = -70c + c$ passing through $(-1, 5)$. $5 = -7(-1) + c \Rightarrow c = 5 - 7 = -2$

Answer = -70c - 2 (4 marks)

Turn over for the next question

9	Write this ratio in its simplest form
	$\sqrt{12}$: $\sqrt{48}$: $\sqrt{300}$
	$\sqrt{12}:\sqrt{4\times12}:\sqrt{25\times12}$ = $\sqrt{12}:2\sqrt{12}:5\sqrt{12}$ = 1:2:5
	Answer
10	The n^{th} term of the linear sequence 2 7 12 17 is $5n-3$
	A new sequence is formed by squaring each term of the linear sequence and adding 1.
	Prove algebraically that all the terms in the new sequence are multiples of 5.
	Multiplus of 5 can be expressed as 5n where
	n is an integer.
	nth term of new sequence is given by $(5n-3)^2+1$ = $(5n-3)(5n-3)+1=25n^2-30n+9+1$
	$= 25n^2 - 30n + 10 = 5(5n^2 - 6n + 2)$
	:. Since n must be an integer, so too must
	5n2-6n+2 × so 5 (5n2-6n+2) will be
	a multiple of 5.
	(+ marks)

11 OABC is a kite.



11 (a) Work out the equation of AC.

$$y = mx + c$$
 where $m = \frac{y_2 - y_1}{3} = \frac{0 - 4}{3} = -\frac{1}{3}$
and $c = 4$ (i.e. the y-intercept) $3(x-x)$, $12 - 0 = \frac{3}{3}$
 $y = -\frac{1}{3}x + 4$ or $3y + x = 12$

Answer
$$y = -\frac{1}{3} > c + 4$$
 (2 marks)

11 (b) Work out the coordinates of B.

As OABC is a kite, AC is the perpendicular bisector of OB whose equation must therefore be given by y = 32c. If (a, b) is the intersection point for lines AC and OB, then a must be the solution to $x = \frac{1}{3}x + 4$, i.e. $\frac{10}{3}x = 4 = 2c = 4$ $\frac{3}{5} = \frac{12}{5} = \frac{6}{5}$ or $\frac{1}{3} \cdot \frac{1}{5} = \frac{18}{5}$ or $\frac{3}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{1}{5} \cdot \frac{1}{$

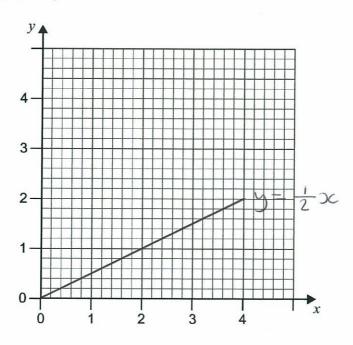
Answer (2.4 , 7.2) (6 marks)

15

12 (a) A graph passes through (0, 0).

The rate of change of y with respect to x is always $\frac{1}{2}$.

Draw the graph of y for values of x from 0 to 4.

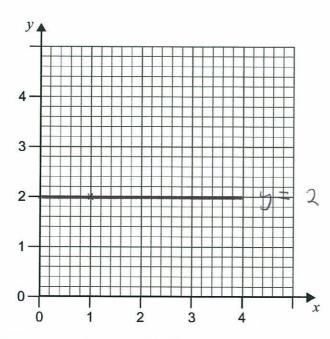


(1 mark)

12 (b) A graph passes through (1, 2).

The rate of change of y with respect to x is always 0.

Draw the graph of y for values of x from 0 to 4.



(1 mark)

 $y = 2x^3 + ax$, where a is a constant. 12 (c)

The value of $\frac{dy}{dx}$ when x = 2 is twice the value of $\frac{dy}{dx}$ when x = -1

Work out the value of a.

$$\frac{dy}{dx} \text{ or } f'(x) = 6x^2 + a$$

$$f'(z) = 2f'(-1)$$

$$f'(z) = 2f'(-1)$$

=> $6(2)^2 + a = 2[6(-1)^2 + a]$

$$=$$
 24 + a = 2 (6+a)

$$\Rightarrow$$
 24+ a = 12+ 2a

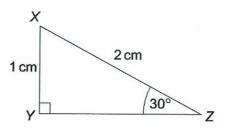
$$a = \frac{1}{2}$$
 (5 marks)

Turn over for the next question

P56065/Jun12/8360/1

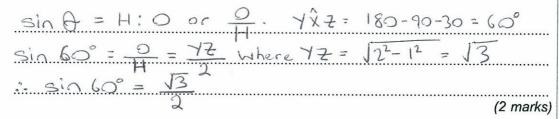
	13	Simplify $\frac{x}{x}$	$\frac{2 + 4x - 12}{x^2 - 25}$	$\div \frac{x+6}{x^2-5x}$			
/		(DC - 2)((x+6)	X 2(26-5)	<u></u>	
Differ two sq		= \(\chi \)					
			Answer	x(x- x+5	2)_		. (5 marks)
	14	$x^{\frac{3}{2}} = 8$ where x	:>0 and	$y^{-2} = \frac{2}{4}$	$\frac{5}{4}$ where $y > 0$		$\frac{2}{3}$
		Work out the va $x^{\frac{3}{2}} = 8$	y	$(\sqrt{5}c)^3 =$	8 => x	$= \left(\sqrt[3]{8}\right)^2$	
						$= \overline{\left(\frac{25}{4}\right)} = \frac{6}{2}$	<u>+</u> 5
		=> 5 = :. 2 =				2 = 10	
			$\frac{x}{y} = \dots$	0			(5 marks)

15 (a) XYZ is a right-angled triangle.

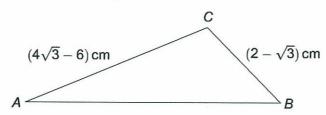


Not drawn accurately

Use triangle XYZ to show that $\sin 60^\circ = \frac{\sqrt{3}}{2}$



15 (b) Triangle ABC has an obtuse angle at C.



Not drawn accurately

Given that $\sin A = \frac{1}{4}$, use triangle ABC to show that angle $B = 60^{\circ}$

From part (a) $\sin^{-1} \sqrt{3} = 60^{\circ}$ From the sine rule, $\sin A = \sin B$ $2-\sqrt{3} \qquad 4\sqrt{3} = 6$

 $= 4\sqrt{3} + 6 - 6 - 3\sqrt{3} = \sqrt{3}$ = 2(4 - 3) = 2

:. Since $\sin B = \frac{\sqrt{3}}{2}$, $B = \sin^{-1} \frac{\sqrt{3}}{2} = 60^{\circ}$

(6 marks)

18

16 Prove that $\tan \theta + \frac{1}{\tan \theta} = \frac{1}{\sin \theta \cos \theta}$ # $\frac{a}{\sin \theta \cos \theta}$ # $\frac{a}{\cos \theta} = \frac{a}{\sin \theta$

END OF QUESTIONS

From Pythagoras' theorem, $1^2 = \cos^2 \Theta + \sin^2 \Theta$ i.e. $\sin^2 \Theta + \cos^2 \Theta = 1$

cos O

P56065/Jun12/8360/1

